1 内存于通信
不要通过共享内存的方式通信,而是应该通过通信的方式共享内存。
例如不要使用传输变量地址的方式检测变量的值,而可以用管道直接判断,因为管道有内容才会允许被取值。
1.1 优势
1.可以避免协程竞争和数据冲突的问题。
2.管道示更高级的抽象,可以降低开发难度,增加程序的可读性。
3.模块之间更易解耦,增强可扩展性和可维护性。
2 channel
type hchan struct {
//缓存区的构成-5行
qcount uint // total data in the queue
dataqsiz uint // size of the circular queue
buf unsafe.Pointer // points to an array of dataqsiz elements
elemsize uint16
closed uint32 //状态值 0-开启 1-关闭
elemtype *_type // element type
//指向链表的当前执行的位置
sendx uint // send index
recvx uint // receive index
//发送和接收的链表
recvq waitq // list of recv waiters
sendq waitq // list of send waiters
//保护此结构体的所有字段--任何操作结构体的函数都要加锁-目的是保护结构体本身
lock mutex
2.1 channel缓存区的构建
2.2 底层原理
2.2.1 语法糖
<-
关键字其实是一个语法糖,编译的时候会变为runtime.chansend1()。
// entry point for c <- x from compiled code
//go:nosplit
func chansend1(c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())
}
->
也是语法糖,编译阶段i<- c
转化为runtime.chanrecv1()
; i, ok <- c
转化为runtime.chanrecv2()
。最终还是调用chanrecv()
方法。
// entry points for <- c from compiled code
//go:nosplit
func chanrecv1(c *hchan, elem unsafe.Pointer) {
chanrecv(c, elem, true)
}
//go:nosplit
func chanrecv2(c *hchan, elem unsafe.Pointer) (received bool) {
_, received = chanrecv(c, elem, true)
return
}
2.2.2 channel发送的情形
直接发送
指在数据发送之前,已经有协程G在等待接收了。则先唤醒协程,再将数据直接拷贝。
func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
if c == nil {
if !block {
return false
}
gopark(nil, nil, waitReasonChanSendNilChan, traceEvGoStop, 2)
throw("unreachable")
} //是否为空的判断
if debugChan {
print("chansend: chan=", c, "\n")
}
if raceenabled {
racereadpc(c.raceaddr(), callerpc, abi.FuncPCABIInternal(chansend))
}
if !block && c.closed == 0 && full(c) {
return false
}
var t0 int64
if blockprofilerate > 0 {
t0 = cputicks()
}
//上锁
lock(&c.lock)
//判断channel是否被关闭
if c.closed != 0 {
unlock(&c.lock)
panic(plainError("send on closed channel"))
}
//从等待队列中取协程
if sg := c.recvq.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want to send
// directly to the receiver, bypassing the channel buffer (if any).
send(c, sg, ep, func() { unlock(&c.lock) }, 3)
return true
}
//若等待队列无法取出协程则存入缓存
//缓存
//...
chansend()
调用了 send()
func send(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {
if raceenabled {
if c.dataqsiz == 0 {
racesync(c, sg)
} else {
racenotify(c, c.recvx, nil)
racenotify(c, c.recvx, sg)
c.recvx++
if c.recvx == c.dataqsiz {
c.recvx = 0
}
c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz
}
}
if sg.elem != nil {
sendDirect(c.elemtype, sg, ep) //发送数据
sg.elem = nil
}
gp := sg.g
unlockf()
gp.param = unsafe.Pointer(sg)
sg.success = true
if sg.releasetime != 0 {
sg.releasetime = cputicks()
}
//与gopark()相反,作用是唤醒协程
goready(gp, skip+1)
}
send()
调用 sendDirect()
func sendDirect(t *_type, sg *sudog, src unsafe.Pointer) {
//sudog结构体的elem指向的是传入参数的地址
dst := sg.elem
typeBitsBulkBarrier(t, uintptr(dst), uintptr(src), t.size)
memmove(dst, src, t.size) //内存移动-直接拷贝
}
放入缓存
没有协程G接收数据,但是有数据且有缓存空间。
chansend()的剩余代码:
func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
//...
//之上为直接发送
//缓存区已缓存的数量 < 总量
if c.qcount < c.dataqsiz {
// Space is available in the channel buffer. Enqueue the element to send.
qp := chanbuf(c, c.sendx)
if raceenabled {
racenotify(c, c.sendx, nil)
}
//参数移动到缓存单元
typedmemmove(c.elemtype, qp, ep)
//维护数据
c.sendx++
if c.sendx == c.dataqsiz {
c.sendx = 0
}
c.qcount++
unlock(&c.lock)
return true
}
//缓存区已满
//...
}
休眠等待
func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
//...
//缓存已满
if !block {
unlock(&c.lock)
return false
}
// Block on the channel. Some receiver will complete our operation for us.
gp := getg() //拿到自己的协程结构体
mysg := acquireSudog() //包装自己
mysg.releasetime = 0
if t0 != 0 {
mysg.releasetime = -1
}
// No stack splits between assigning elem and enqueuing mysg
// on gp.waiting where copystack can find it.
mysg.elem = ep
mysg.waitlink = nil
mysg.g = gp
mysg.isSelect = false
mysg.c = c
gp.waiting = mysg
gp.param = nil
//将自己包装成sudog结构体--协程
//将自己放入等待队列
c.sendq.enqueue(mysg)
atomic.Store8(&gp.parkingOnChan, 1)
//进入休眠
gopark(chanparkcommit, unsafe.Pointer(&c.lock), waitReasonChanSend, traceEvGoBlockSend, 2)
KeepAlive(ep)
//被唤醒之后只需维护数据-以下的代码,不用接收数据---已经被取走了
// someone woke us up.
if mysg != gp.waiting {
throw("G waiting list is corrupted")
}
gp.waiting = nil
gp.activeStackChans = false
closed := !mysg.success
gp.param = nil
if mysg.releasetime > 0 {
blockevent(mysg.releasetime-t0, 2)
}
mysg.c = nil
releaseSudog(mysg)
if closed {
if c.closed == 0 {
throw("chansend: spurious wakeup")
}
panic(plainError("send on closed channel"))
}
return true
}
2.2.3 channel的数据接收
有等待的协程,从协程接收数据
即数据接收前已经有协程等待发送,且没有缓存时:直接拷贝数据然后唤醒send的协程。
func chanrecv(c *hchan, ep unsafe.Pointer, block bool) (selected, received bool) {
//block指是否阻塞
if debugChan {
print("chanrecv: chan=", c, "\n")
}
if c == nil {
if !block {
return
}
gopark(nil, nil, waitReasonChanReceiveNilChan, traceEvGoStop, 2)
throw("unreachable")
}
// Fast path: check for failed non-blocking operation without acquiring the lock.
if !block && empty(c) {
// After observing that the channel is not ready for receiving, we observe whether the
// channel is closed.
//
// Reordering of these checks could lead to incorrect behavior when racing with a close.
// For example, if the channel was open and not empty, was closed, and then drained,
// reordered reads could incorrectly indicate "open and empty". To prevent reordering,
// we use atomic loads for both checks, and rely on emptying and closing to happen in
// separate critical sections under the same lock. This assumption fails when closing
// an unbuffered channel with a blocked send, but that is an error condition anyway.
if atomic.Load(&c.closed) == 0 {
// Because a channel cannot be reopened, the later observation of the channel
// being not closed implies that it was also not closed at the moment of the
// first observation. We behave as if we observed the channel at that moment
// and report that the receive cannot proceed.
return
}
// The channel is irreversibly closed. Re-check whether the channel has any pending data
// to receive, which could have arrived between the empty and closed checks above.
// Sequential consistency is also required here, when racing with such a send.
if empty(c) {
// The channel is irreversibly closed and empty.
if raceenabled {
raceacquire(c.raceaddr())
}
if ep != nil {
typedmemclr(c.elemtype, ep)
}
return true, false
}
}
var t0 int64
if blockprofilerate > 0 {
t0 = cputicks()
}
lock(&c.lock)
//是否已经被关闭
if c.closed != 0 && c.qcount == 0 {
if raceenabled {
raceacquire(c.raceaddr())
}
unlock(&c.lock)
if ep != nil {
typedmemclr(c.elemtype, ep)
}
return true, false
}
//再发送队列中拿到协程
if sg := c.sendq.dequeue(); sg != nil {
recv(c, sg, ep, func() { unlock(&c.lock) }, 3)
return true, true
}
chanrecv()
调用 recv()
函数
func recv(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {
//判断缓存区是否为空
if c.dataqsiz == 0 {
if raceenabled {
racesync(c, sg)
}
if ep != nil {
recvDirect(c.elemtype, sg, ep) //缓存区为空则直接接收--调用内存移动函数
}
} else {
qp := chanbuf(c, c.recvx)
if raceenabled {
racenotify(c, c.recvx, nil)
racenotify(c, c.recvx, sg)
}
// copy data from queue to receiver
if ep != nil {
typedmemmove(c.elemtype, ep, qp)
}
// copy data from sender to queue
typedmemmove(c.elemtype, qp, sg.elem)
c.recvx++
if c.recvx == c.dataqsiz {
c.recvx = 0
}
c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz
}
//维护协程状态
sg.elem = nil
gp := sg.g
unlockf()
gp.param = unsafe.Pointer(sg)
sg.success = true
if sg.releasetime != 0 {
sg.releasetime = cputicks()
}
goready(gp, skip+1) //唤醒发送协程--ta不用再发送了
}
有等待的协程,从缓存接收
channel有缓存,自己将缓存中的数据拿走,再将发送队列等待的协程的数据放入缓存中,最后再唤醒发送的协程。
recv()
之后的部分:
func recv(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {
if c.dataqsiz == 0 {
if raceenabled {
racesync(c, sg)
}
if ep != nil {
recvDirect(c.elemtype, sg, ep) //缓存区为空则直接接收--调用内存移动函数
}
} else { //直接取值的情形,else-有缓存
qp := chanbuf(c, c.recvx)
if raceenabled {
racenotify(c, c.recvx, nil)
racenotify(c, c.recvx, sg)
}
// copy data from queue to receiver
if ep != nil {
typedmemmove(c.elemtype, ep, qp) //直接取出缓存的数据
}
// copy data from sender to queue
typedmemmove(c.elemtype, qp, sg.elem) //将等待发送数据协程的数据移至缓存空间
c.recvx++
if c.recvx == c.dataqsiz {
c.recvx = 0
}
c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz
}
//维护协程状态
sg.elem = nil
gp := sg.g
unlockf()
gp.param = unsafe.Pointer(sg)
sg.success = true
if sg.releasetime != 0 {
sg.releasetime = cputicks()
}
goready(gp, skip+1) //唤醒发送协程--ta不用再发送了
}
没有等待携程,接收缓存
没有协程再发送队列等待,且channel有缓存。’
func chanrecv(c *hchan, ep unsafe.Pointer, block bool) (selected, received bool) {
//..
//队列中没有协程,缓存中有
if c.qcount > 0 {
// Receive directly from queue
qp := chanbuf(c, c.recvx)
if raceenabled {
racenotify(c, c.recvx, nil)
}
if ep != nil {
typedmemmove(c.elemtype, ep, qp) //将数据移动到接收地址
}
typedmemclr(c.elemtype, qp)
c.recvx++
if c.recvx == c.dataqsiz {
c.recvx = 0
}
c.qcount--
unlock(&c.lock)
return true, true
}
没有等待协程,阻塞接收
没有任何数据存在,自己进入接收队列等待。
func chanrecv(c *hchan, ep unsafe.Pointer, block bool) (selected, received bool) {
//..
//前面没有任何可取的数据
if !block {
unlock(&c.lock)
return false, false
}
// no sender available: block on this channel.
gp := getg()
mysg := acquireSudog()
mysg.releasetime = 0
if t0 != 0 {
mysg.releasetime = -1
}
// No stack splits between assigning elem and enqueuing mysg
// on gp.waiting where copystack can find it.
mysg.elem = ep
mysg.waitlink = nil
gp.waiting = mysg
mysg.g = gp
mysg.isSelect = false
mysg.c = c
gp.param = nil
c.recvq.enqueue(mysg) //包装完成后将自己放入接收队列中
// Signal to anyone trying to shrink our stack that we're about
// to park on a channel. The window between when this G's status
// changes and when we set gp.activeStackChans is not safe for
// stack shrinking.
atomic.Store8(&gp.parkingOnChan, 1)
//休眠
gopark(chanparkcommit, unsafe.Pointer(&c.lock), waitReasonChanReceive, traceEvGoBlockRecv, 2)
// someone woke us up--唤醒后维护一下数据,结束即可--数据已经被取走了。
if mysg != gp.waiting {
throw("G waiting list is corrupted")
}
gp.waiting = nil
gp.activeStackChans = false
if mysg.releasetime > 0 {
blockevent(mysg.releasetime-t0, 2)
}
success := mysg.success
gp.param = nil
mysg.c = nil
releaseSudog(mysg)
return true, success
}
2.2.4 非阻塞的channel的使用-select
1.编译时判断存在接收、发送、默认路径,
2.首先查看是否有可以立即执行的case,
3.没有则直接进入default语句,
4.没有default语句则将自己注册再所有的case的channel中,进入休眠。
2.2.5 timer计时器
func main(){
t := time.NewTimer(time.Second) //生成定时器,t在一秒后向其管道中塞一个值
<- t.C //从t中的通道取出数据
//要等待1s才会有值!!
//...
}
评论